تيزنيت : وقفة احتجاجية غاضبة من تردي أوضاع المستشفى الإقليمي و المراكز الصحية بالإقليم ( فيديو )    القنوات الناقلة لمباراة المغرب وزامبيا اليوم في تصفيات كأس العالم    طقس اليوم الإثنين بالمغرب    تأجيل إبحار «أسطول الصمود» من تونس لكسر حصار غزة إلى الأربعاء    زلزال الحوز .. دينامية متواصلة لإعادة الإعمار في جميع الأقاليم المتضررة    الإصابات تربك حسابات الركراكي    كرة القدم .. المنتخب الوطني لأقل من 20 سنة يتعادل مع نظيره الأمريكي (0-0)    بعثة منتخب الجزائر تصل إلى البيضاء    زلزال الحوز .. دينامية متواصلة لإعادة الإعمار في جميع الأقاليم المتضررة    "منظمة حقوقية تشيد بأجواء جنازة أحمد الزفزافي وتلتمس العفو عن معتقلي "حراك الريف    فيدرالية اليسار بالفقيه بن صالح تتضامن مع أحد أعضاءها وتدين الاستدعاءات المتكررة        البيئة ليست قضية اختيارية أو محلية بل هي قضية وجود الإنسان والحياة    برقية تعزية ومواساة من جلالة الملك إلى الرئيس البرتغالي على إثر الحادث المأساوي لخروج القطار المائل السياحي عن مساره    هيئات مهنية ونقابية تصعد ضد مشروع إعادة تنظيم المجلس الوطني للصحافة    الزفزافي‮:‬ ‬سجين ‬من ‬على ‬سطح‮..‬ ‬الحرية‮!‬    جديد الشاعرة المغربية سعاد الرايس: «لوحات الإبحار» اهتمامات إنسانية وعشق للكتابة بقلق وجودي    أعمال أدبية وفنية مغربية تستفيد من منح الصندوق العربي للثقافة والفنون    أنا وأنا وما بينهما .. رسائل بين عبدالله المتقي ومحمد بوحوش    أمير المؤمنين يصدر أمره إلى المجلس العلمي الأعلى بإصدار فتوى شاملة توضح للناس أحكام الشرع في موضوع الزكاة    الفانوس " يضيء ليالي مهرجان المسرح التجريبي والضنحاني يوقع النسخة العربية والإنجليزية للمسرحية    روسيا تعلن جاهزية أول لقاح ضد السرطان    فيلم مريم التوزاني يمثل المغرب بأوسكار 2026    مسؤول أممي يحرج الأنظمة العربية: دعمها للاجئين الفلسطينيين يتراجع 90% ودعوة عاجلة للتحرك    مايكروسوفت تحذّر من بطء محتمل لخدمة الأنترنيت جراء انقطاع كابلات بحرية في البحر الأحمر    المغرب ثالث أكبر منتج للأفوكادو في إفريقيا بإيرادات صادرات بلغت 179 مليون دولار    إطلاق خط بحري جديد بين المغرب وأوروبا الغربية بإشراف دي بي وورلد    برقية تهنئة من جلالة الملك إلى الرئيس البرازيلي بمناسبة العيد الوطني لبلاده    سلا.. تفكيك شبكة لترويج المخدرات وحجز أكثر من 1200 قرص مهلوس وكوكايين    الأمم المتحدة: هلال يختتم بنجاح المفاوضات بشأن الإعلان السياسي للقمة الاجتماعية الثانية المرتقبة في الدوحة    "غروب".. مسرحية تفتش في وجع الإنسان وتضيء انكساراته بلوحات شعرية    غزو القضاء يتواصل بإطلاق 24 قمرا اصطناعيا جديدا    رصد فلكي غير مسبوق لمذنب يقترب من المجموعة الشمسية    المغرب يستقبل شحنات جديدة من الأعلاف الروسية    زيادة ملحوظة في حركة المسافرين عبر مطار الحسيمة الشريف الإدريسي        السطو المسلح يقود ستة أشخاص للإعتقال بالدار البيضاء    الفتح الرباطي يدخل الموسم الجديد بطموح المنافسة على الألقاب    تواصل أشغال الربط السككي بميناء الناظور غرب المتوسط ب111 مليون درهم    المغرب يسجل واحداً من أعلى معدلات السمنة في إفريقيا.. والنساء الأكثر تضرراً    هزائم تدفع رئيس وزراء اليابان للتنحي    المراهق الإيطالي الراحل كارلو أكويتس يصبح أول قديس لجيل الألفية    تل أبيب: وقف الحرب مرهون بشروط    الجمارك تحجز باخرتين بالأبقار البرازيلية وتطالب بملياري سنتيم ضريبة    دراسة: عصير الشمندر يُخفّض ضغط الدم لدى كبار السن    دراسة : السلوك الاجتماعي للمصابين بطيف التوحد يتأثر بالبيئة    البراهمة: "استمرار اعتقال نشطاء الريف ينص جرحا مفتوحا في مسار العدالة والحقوق بالمغرب"    العصبة الاحترافية تفرج عن برنامج الجولتين الأولى والثانية من البطولة الوطنية    منير الحدادي يفاجئ الجميع بتوقيعه لفريق إيراني    أسعار المحروقات تتراجع دوليا وتباع بضعف قيمتها محليا    فيليز سارسفيلد يحرز لقب كأس السوبر الأرجنتيني بفوزه على سنترال كوردوبا    المهرجان السينمائي الدولي للبندقية.. فيلم "Calle Malaga" لمريم التوزاني يفوز بجائزة الجمهور    مختبر المغرب و البلدان المتوسطية و مؤسسة شعيب الصديقي الدكالي يوقعان اتفاقية شراكة    نقد مقال الريسوني    الصحة العالمية تقرر رفع حالة الطوارئ بخصوص جدري القردة    الملك محمد السادس يأمر بإصدار فتوى توضح أحكام الشرع في الزكاة    المجلس العلمي الأعلى يعلن إعداد فتوى شاملة حول الزكاة بتعليمات من الملك محمد السادس    مبادرة ملكية لتبسيط فقه الزكاة وإطلاق بوابة رقمية للإجابة على تساؤلات المواطنين    







شكرا على الإبلاغ!
سيتم حجب هذه الصورة تلقائيا عندما يتم الإبلاغ عنها من طرف عدة أشخاص.



ما قبل "فيثاغورس" ومابعد "فيرما" ..
نشر في هسبريس يوم 16 - 08 - 2016


قصة عايشت جميع مراحل الفكر الرياضي
مقدمة :
ربما تكون الصدفة وحدها هي التي قادت الى اكتشاف ما دَوّنَه (1601-1665) Pierre de Fermat رجل القانون الفرنسي (Toulouse) سنة 1637، على هامش إحدى صفحات كتاب للرياضيات مُدَوَّن باللاثينية Les Arithmétiques ، التي كان يتحدث فيها مؤلفه Diophante (207 - 291) عن كيفية تحديد أطوال صحيحة طبيعية لمثلث قائم الزاوية، أي كيفية إيجاد حلول صحيحة طبيعية لمعادلة Pythagore(-569, -494) المشهورة x2+ y2 = z2 ، حيث كتب Fermat ما يلي: "المكعب ليس بجموع مكعبين، قوة رابعة ليست مجموع قوتين رابعتين، وبشكل عام كل قوة أكبر من اثنين ليست مجموع قوتين مماثلتين لها. لقد عثرت على برهان رائع لهذه المبرهنة، إلا أن كتابته غير ممكنة حيث أن هذا الهامش ضيق جدا ولا يسمح بذلك ". من هنا يتبين أن Fermat كان منشغلا بمحاولة تعميم معادلة Pythagore الى الدرجات الأخرى (xn+ yn = zn ; n2 ) وصرح في نفس الوقت أن هذه المعادلات الناتجة عن التعميم لا تقبل أي حلول صحيحة غير منعدمة ، عكس معادلة Pythagore .
لقد شكل هذا الحدث لحظة فارقة في تاريخ الرياضيات. من جهة فإنه يعتبرنقطة تحول بالنسبة لمبرهنة فيثاغورس التي ستعرف تطورا جديدا وغير مسبوق، بعد كل التطورات التي عرفتها منذ حضارة ما بين النهرين الى الحضارة المصرية ثم الإغريقية ، ومن جهة أخرى فإن هذا الحدث خلق حالة اسْتِنْفَاروحَيْرَة شديدة في صفوف الرياضيين بمستوياتهم المختلفة، وذلك لفشلهم في إيجاد برهان يثبت مبرهنة Fermat أو مثال مضاد يَدْحَضُها، ولم تنتهي هذه الأزمة إلا سنة 1995 مع تقديم البرهان النهائي لمبرهنة Fermat ، باستعمال وسائل العصر المتطورة جدا ( الكومبيوتر)، من طرف الرياضي الأنجليزي Andrew Wiles (1953- ) .
ما قبل فيثاغورس :
تتعلق مبرهنة Pythagore أساسا بالمثلث القائم الزاوية، في بعدها الهندسي " في كل مثلث قائم الزاوية، مربع الوتر يساوي مجموع مربعي الضلعين المُكَوِّنين للزاوية القائمة والعكس صحيح " ، أما بُعْدُهَا الجبري فيظهر في اعتبار المعادلة x2+ y2 = z2 والبحث عن حلول صحيحة أو جدرية لها، وهذه مسألة جد عادية في زمان Pythagore أو قبله لأن الأعداد اللاجدرية لم تكن معروفة آنذاك، وربما استمر الوضع هكذا الى عهد Diophante (207 - 291) الاسكندراني الذي خصص للمعادلات ذات الصيغة الحدودية التي معاملاتها أعداد صحيحة وحلولها المطلوبة أعداد صحيحة طبيعية أو كسرية، حيزا هاما في كتابه Les Arithmétiques حتى سميت باسمه Equations de Diophante.
الحقيقة أن مبرهنة فيثاغورس التي لا زال معهد La Columbia Institut يحافظ على اللوحة الطينية التي كتبت عليها، كانت معروفة في حالات خاصة لدى الصينيين والبابليين 1000 عام قبل فيثاغورس ، وكان المصريون يعرفون المبرهنة في أبسط حالاتها، حيث كانوا يستعملون حبلا به 13 عقدة وبمجرد تكوين مثلث طول أضلاعه على التوالي 3 ، 4 ، 5 بواسطة هذا الحبل يحصلون على مثلث قائم الزاوية وبالتالي على الزاوية القائمة. وقد استعملت فكرة الحبل هاته بعد ذلك من طرف عمال البناء للتأكد من أن الحائط عموديا . وكل ما قام به الفيثاغوريون هو تعميم الخاصية على جميع المثلثات القائمة الزاوية .
بين فيثاغورس و فيرما :
أول برهان معروف لمبرهنة فيثاغورس جاء ضمن كتاب "Les Eléments" لأقليدس الأسكندراني Euclide d'Alexandrie (-320 ; -260) أي بعد أكثر من قرنين على اكتشافها من طرف المدرسة الفيثاغورية، مما يُبْعِد احتمال أن يكون هذا البرهان من ابتكار هذه المدرسة .
من جهة أخرى فقد لعب كتاب Les Arithmétiques للرياضي Diophante (207 - 291) دورا هاما في انطلاق مغامرات فكرية جديدة مستوحاة من معادلة فيثاغورس. خُصِّص هذا الكتاب الذي يحتوي على 13 جزءا، لحل المسائل ويَشْمَلُ 189 مسألة تعتمد في حلها على المعادلات الحدودية من الدرجة الأولى والثانية، وقد حضي هذا الكتاب باهتمام الرياضيين العرب ك أبي الوفى، وقد كان Diophante يعتبر كل معادلة حلولها لا جدرية كمعادلة متناقضة عكس Archimède(-287,-212) و Héron d'Alexandrie الذي كانا يقبلان الحلول اللاجدرية ويكتفيان بتقديم قيم تقريبية لها.
فيرما والنقطة التي أفاضت الكأس:
ينحدر (1601-1665) Pierre de Fermat الذي ازداد في 17 غشت 1601 من عائلة برجوازية، تابع دراسته الأساسية بمدينة Toulouse ، ثم دراسته القانونية بمدينة Orléans . تقلد عدة مناصب هامة لها علاقة بتكوينه القانوني ، والسبب في تسلقه هذه المناصب ليس لكونه نابغة في القانون بل بسبب اهتماماته العلمية في مجال الرياضيات والفزياء، حيث كان يعتبر عبقري عصره . لم يكن Fermat رياضيا محترفا، بل كان هاويا يمارس الرياضيات بشغف في أوقات فراغه. لم يكن Fermat يُدَوِّن أبحاثه بل كان يفضل اقتسام ما توصل اليه مع علماء عصره مثل Galilée (1564 ; 1642) وDescartes (1596 ; 1650) و Pascal (1623 ; 1662) و Mersenne (1588 ; 1648).
قام Fermat بأعمال هامة في مجال الرياضيات، حيث قارب مفهوم الاشتقاق لتحديد القيم القصوية والدنوية للدوال الحدودية وطور طرائق لحساب التكامل قريبة من الطرائق المستعملة حاليا. وقد تبادل كل من Fermat و Pascal مراسلات أدت الى عرض نظرية جديدة وهي " حساب الاحتمالات" calculs de probabilités ونشرت نتائج البحث التي توصلوا إليها سنة 1675 في كتاب للرياضي Christiaan Huygens (1629 ; 1695).
غير أن ما كان يشغل Fermat بالخصوص هي رياضيات ما قبل التاريخ وقد كتب كما أشرنا سابقا عبارته المشهورة على هامش صفحة من كتاب Diophante (207 - 291) والتي يقول فيها أنه توصل الى برهان رائع يثبت فيه أن كل معادلة على شكل (xn+ yn = zn ; n2 ) لا تقبل أي حل صحيح غيرمنعدم. والمثير في الأمر أن هذا البرهان المزعوم لم يُعْثَر له على أي أثر. هناك احتمال أن يكون البرهان مجرد فكرة تراءت ل Fermant دون أن يكتبها، وحتى إن كانت فكرة البرهان موجودة في عقل Fermat ، فإنها ستعتمد بالأساس على خاصيات عادية للحقائق الرياضية المعروفة في زمن Fermat ، إلا أن الغريب في الأمر هو، كما قلنا سابقا، فإن الرياضيين بمستوياتهم المختلفة، فشلوا في إيجاد برهان يستخدم الخاصيات العادية المعروفة، لإثبات المبرهنة أو دَحْضِها، أضف الى ذلك أن Fermat نفسه برهن على الخاصية في الحالة n=4 ، ومن هنا نستنتج أنه لو كان البرهان العام موجودا فلمذا يبحث Fermat عن برهان لحلات خاصة ، اللهم إلا إذا كان هذا البرهان سابقا على البرهان العام المحتمل.
ما بعد فيرما :
لم يتم العثور عند Fermat إلا على البرهان الخاص بالحالة n=4 الذي أنجز حوالي 1637 ، وقد جاءت براهين لحالات خاصة أخرى بعد مدد طويلة وهي على التوالي ، حالة n=3 سنة 1753 برهن عليها Euler(1707,1783) ، حالة n=5 سنة 1825 برهن عليها Dirichlet (1805-1859) و Legendre (1752-1833) ، حالة n=7 سنة 1839 برهن عليها Lamé (1795-1870) و آخرون ... أما الحالة n=6 لم تتم البرهنة عليها لأنها مجرد استنتاج من الحالة 3 . وقد تبين بعد ذلك أنه يكفي البرهنة على الخاصية في حالة n عدد أولي من أجل تعميمها ... هكذا توالت محاولات البرهنة على الخاصية من طرف رياضيين آخرين لكن دون أن يتمكن أي أحد منهم للبرهنة عليها بصفة عامة. لكن الأهم بالنسبة للرياضيين وبالخصوص Kummer (1810-1893) هو أنهم فتحوا فروع جديدة للبحث في مجال الجبر ونظرية الأعداد أملا في الوصول الى البرهان المنشود.
بعد ما يقارب 350 سنة من العمل المضني الذي لم يؤدي إلا الى نتائج جزئية، تمت أخيرا البرهنة على خاصية Fermat من طرف Andrew Wiles كما أسلفنا ، هذا الأخير الذي اعتكف، بسرية ،على العمل المكثف لمدة ثمان سنوات. نُشِر البرهان الذي يتضمن 200 صفحة، بشكله النهائي سنة 1995 ، واعتمد وسائل قوية في نظرية الأعداد. واستعملت فيه أفكار جديدة ومعقدة وتمت الاستعانة بآخر ما وصلت اليه التكنلوجيا الرقمية ، حيث أن عددا قليلا جدا من الأشخاص في العالم فقط، هم الذين يستطيعون متابعة البرهان في تفاصيله.
Ref1 : https://perso.univ-rennes1.fr/matthieu.romagny/exposes/conference_fermat.pdf
Ref2 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/pythagore
Ref3 : https://fr.wikipedia.org/wiki/Loi_des_cosinus
Ref4 : http://www.math93.com/index.php/histoire-des-maths/notions-et-theoremes/les-developpements/408-theoreme-d-al-kashi
Ref5 : https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Pythagore
Ref6 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/diophante
Ref7 : http://www.maths-et-tiques.fr/index.php/histoire-des-maths/mathematiciens-celebres/fermat
Ref8 : https://fr.wikipedia.org/wiki/Dernier_th%C3%A9or%C3%A8me_de_Fermat
*مفتش ممتاز لمادة الرياضيات سابقا
[email protected]


انقر هنا لقراءة الخبر من مصدره.