نشرة إنذارية.. طقس حار وزخات رعدية مصحوبة بتساقط للبرد وبهبات رياح يومي الخميس والجمعة بعدد من مناطق المملكة    رئيس النيابة العامة: التعاون القضائي الدولي مدخل أساسي لردع الجريمة المنظمة العابرة للحدود    هشام بلاوي: الجريمة المنظمة تهديد متصاعد يتطلب تعاونًا قضائيًا دوليًا فعالًا    بنيله شهادة البكالوريا من خلف أسوار السجن، نزيل يخطو أولى خطواته على سكة إعادة الاندماج (بورتريه)    تفكيك شبكة مغربية-إسبانية لتهريب البشر والمخدرات تستعمل قوارب الفانتوم        نشرة إنذارية..طقس حار وزخات رعدية مصحوبة بتساقط للبرد وبهبات رياح بعدد من مناطق المملكة    الأكاديمية الدولية للشعر تتوج المغرب    معرض بكين للكتاب: اتفاقية لترجمة مؤلفات حول التراث المغربي اللامادي إلى اللغة الصينية    الدوزي يُطلق العدّ التنازلي ل"ديما لباس"    كتل هوائية صحراوية ترفع الحرارة إلى مستويات غير معتادة في المغرب    رائحة دخان تجبر طائرة على الهبوط في ميونخ    جوفنتوس يكتسح العين الإماراتي بخماسية    إصابة حكم ومشجعين في فوضى بالدوري الليبي    ميداليات تحفز "بارا ألعاب القوى"    دلالات ‬تجديد ‬مجلس ‬حقوق ‬الإنسان ‬دعمه ‬لمغربية ‬الصحراء    العيون ‬تحتضن ‬منتدى ‬إفريقيا ‬لبحث ‬الآفاق ‬الاقتصادية ‬والتجارية ‬بالقارة    الشعب المغربي يحتفل غدا الجمعة بالذكرى ال55 لميلاد صاحب السمو الملكي الأمير مولاي رشيد    الذهب يصعد وسط التوتر في الشرق الأوسط    التصعيد بين إسرائيل وإيران يعيد للواجهة مطالب إحياء مصفاة "سامير" لتعزيز الأمن الطاقي    مجموعة "فيسين" تطلق طرحا عاما أوليا في بورصة الدار البيضاء    بنعلي وقيوح يبحثان التعاون العملي    طنجاوة يتظاهرون تنديدًا بالعدوان الإسرائيلي على غزة وإيران    "مجزرة جديدة"… إسرائيل تقتل 40 فلسطينيا بينهم 16 من منتظري المساعدات    فحص دم جديد يكشف السرطان قبل ظهور الأعراض بسنوات    بورصة الدار البيضاء تستهل تداولاتها على وقع الانخفاض    بنهاشم بعد مواجهة مانشستر سيتي: لعبنا بشجاعة وخرجنا بدروس ثمينة رغم الخسارة    لقجع: المغرب ملتزم بجعل كأس العالم 2030 نموذجا للاندماج والاستدامة البيئية    رحيمي وحركاس وبنعبيد ضمن قائمة أغلى اللاعبين العرب في مونديال الأندية    فرحات مهني يكتب: الجزائر الإيرانية    اجتماع تنسيقي لأغلبية مجلس النواب يثمن "الانتصارات" الدبلوماسية ويؤكد "أولوية" الحق في الصحة    بنك المغرب والمؤسسة المالية الدولية يوقعان شراكة لتعزيز الشمول المالي الفلاحي بالمغرب    الصين تدفع نحو مزيد من الانفتاح السياحي على المغرب: سفارتها بالرباط تتحرك لتعزيز توافد السياح الصينيين    بيب غوارديولا في تصريح أعقب مواجهة الوداد الرياضي المغربي، إن "المباراة الأولى في دور المجموعات دائما ما تكون صعبة    ندوة علمية تناقش موضوع النخبة المغربية في زمن التغيير    إيران تستهدف مستشفى بجنوب إسرائيل ونتانياهو يتوعدها بدفع "ثمن باهظ"    مجموعة العمل من أجل فلسطين تعقد ندوة صحفية تحضيرا لمسيرة وطنية الأحد بالرباط    برلمان أمريكا الوسطى يُجدد دعمه الكامل للوحدة الترابية للمغرب ويرد على مناورات خصوم المملكة    اصابة دركي اصابات بلغية في عملية لاحباط عملية للتهجير السري وتوقيف 30 حراكا    برلمان أمريكا الوسطى يجدد دعمه للوحدة الترابية للمغرب ردا على المناورات    مربو الدجاج يثمنون توجه الحكومة لإعفاء الفلاحين الصغار ويدعون لإدماجهم الفعلي في برامج الدعم    ياسين بونو يهدي الهلال تعادلا ثمينا أمام ريال مدريد رياضة    كارثة صامتة .. ملايين الهكتارات العربية على وشك الضياع    طنجة.. سيارة تدهس "مقدّم" بعدما دفعه متشرد نحو الطريق    إطلاق الهوية الجديدة ل "سهام بنك" خلفًا ل "الشركة العامة المغربية للأبناك"    خدش بسيط في المغرب ينهي حياة بريطانية بعد إصابتها بداء الكلب    انتخاب المغرب نائبا لرئيس المجلس العلمي لاتفاقية اليونيسكو حول حماية التراث الثقافي المغمور بالمياه    السعودية تدعو إلى ارتداء الكمامة في أداء العمرة    فجيج بين ازيزا النادرة والتربية العزيزة.. حكاية واحة لا تموت    دورة تكوينية وورشات فنية لفائدة الأطفال والشباب بالمركز الثقافي لمدينة طانطان    مسرح رياض السلطان يحتضن أمسيات شعرية موسيقية من الضفتين وقراءة ممسرحة لرواية طنجيرينا وأغاني عربية بإيقاعات الفلامينغو والجاز والروك    التوفيق : تكلفة الحج تشمل خدمات متعددة .. وسعر صرف الريال عنصر حاسم    ورزازات تحدث تحولا نوعيا في التعامل مع الكلاب الضالة بمقاربة إنسانية رائدة    وزير الأوقاف: خدمات واضحة تحدد تكلفة الحج الرسمي وتنسيق مسبق لضبط سعر الصرف    خبير يعرف بالتأثير الغذائي على الوضع النفسي    وزارة الاوقاف تصدر إعلانا هاما للراغبين في أداء مناسك الحج    وزارة الأوقاف تحدد موعد قرعة الحج        









6 مسائل رياضية إذا نجحت في حل إحداها تربح مليون دولار.
نشر في كشـ24 يوم 25 - 12 - 2017

إذا كنت ممكن يتمتعون بمهارة حل المسائل الرياضية وتفوقت في هذه المادة في دراستك، أو وصلت إلى أعلى الشهادات فيها وترغب في أن تأتي بما لم يسبقك له غيرك في هذا المجال، فربما يساعدك هذا التقرير على الوصول إلى غايتك أو على الأقل نيل شرف المحاولة.
فبعد 17 عاماً من إعلان معهد كلاي الأميركي للرياضيات عام 2000 عن “جائزة القرن” التي بلغت مليون دولار، والتي خصصها المعهد بهدف تشجيع الباحثين في علوم الرياضيات على بحل 7 مسائل رياضية، حلّت مسألة واحدة فقط ولا تزال 6 أخرى بالانتظار، ستتعرف عليها في هذا التقرير الذي نشره موقع Business Insider للتذكير بهذه المسائل.
علماً أن الجائزة ما زالت مقدمة من ذات المعهد “لأي شخص يتمكن من تقديم حل شديد الدقة، وخاضع للمعايير الأكاديمية لأي من المسائل” حسب التقرير..
علماً أن إحدى المسائل التي تحمل اسم حدسية بوانكاريه حُلّت بالفعل، ونشر حلها عام 2006 (على يد عالم الرياضيات، جريجوري بيرلمان، والذي نال نفس الشهرة بدوره؛ عندما رفض استلام المليون دولار، وميدالية فيلدز التي يسعى وراءها الجميع)!.
وها هي الست مسائل بالغة الأهمية، والتي تبلغ مكافأة حل واحدة منها مليون دولار.
1- كثير الحدود وكثير الحدود غير القطعي (P vs Np)
بعض المسائل تكون سهلة، والبعض الآخر يكون معقداً.
في عالم الرياضيات وعلوم الحاسوب، تتواجد العديد من المسائل التي نعلم كيفية برمجة الحاسب على حلها بشكل سريع، وذلك باستخدام القواعد الرياضية الأساسية، وفرز القوائم، والبحث من خلال جداول البيانات.
ويمكن حل تلك المسائل خلال ما يُسمى بالبولونوميال الزمني أو التعقيد الزمني (Polynomial Time)، والتي يمكن اختصارها ل P. ويعني عدد الخطوات المطلوبة لجمع رقمين، أو لفرز قائمة، إذ يتزايد ذلك الرقم بشكل طردي مع تزايد حجم الأرقام، أو طول القائمة.
لكن توجد مجموعة أخرى من المسائل حيث يكون من الصعب التأكد إذا ما كان هناك إمكانية لإيجاد حل صحيح لتلك المسائل، كما أننا لا نعلم كيفية إيجاد حل باستخدام طرق فعالة وذات كفاءة. فإيجاد العوامل الرئيسية لرقم كبير هو مشكلة في حد ذاتها، فإذا كان لدي قائمة بعدد من العوامل الممكنة، فبالتالي يكون في مقدرتي القيام بعملية ضرب لتلك العوامل ببعضها للحصول مرة أخرى على الرقم الأصلي. لكنه لا توجد طريقة سريعة ومعروفة لإيجاد تلك العوامل الخاصة برقم اعتباري (عشوائي) كبير. وفي الحقيقة، فإن أمن الإنترنت قائم على تلك الحقيقة.
لأسباب تاريخية وتقنية، فإن المسائل التي يمكن التأكد سريعاً من إمكانية وجود حل لها يتم وصفها بأنها مسائل يُمكن حلها في وقت كثير الحدود غير قطعي “Nondeterministic Polynomial Time”، أو اختصاراً NP.
بالتالي، فإن أي مسألة تقع تحت تصنيف P، فإنها تلقائياً تقع تحت تصنيف NP. فإذا كان بإمكاني التأكد بشكل سريع من وجود حل ممكن للمسألة، فببساطة يمكنني التأكد من وجود حل لها وذلك عن طريق حل المسألة، والتأكد إذا كان حل المسألة يتطابق مع حلي الشخصي أم لا. أساس سؤال “كثير الحدود” في مواجهة “كثير الحدود غير القطعي” هو إذا كان هناك إمكانية لإيجاد حل للمعضلة إذا طرحنا السؤال بشكل عكسي: فإذا كان لدي طريقة فعالة للتأكد من وجود حلول للمسألة، فهل توجد طريقة فعالة في الأساس لإيجاد تلك الحلول؟.
يعتقد أغلب علماء الرياضيات والحاسوب أن الإجابة هي لا. فالخوارزمية الحسابية التي بإمكانها حل مسألة تُصنف على أنها كثير الحدود غير قطعي في التعقيد الزمني (Polynomial Time) سيكون لها توابع جذرية على الرياضيات، والعلوم، والتكنولوجيا، وستكون تلك التوابع ذات أثر عميق للدرجة التي تجعلها تقترح سبباً للشك في إمكانية وجود تلك الخوارزمية من الأساس.
بالتأكيد، فإن قول أنه لا توجد مثل تلك الخوارزمية هو مهمة شاقة في حد ذاتها. فقول ذلك التصريح الحاسم بخصوص تلك النوعية من المسائل الرياضية سيتطلب فهم أعمق لطبيعة المعلومات، وعلوم الحوسبة التي نمتلكها، وسيكون له نتائج جذرية و بعيدة المدى.
2- معادلات نافييه- ستوكس (The Navier- Stokes Equations)
إنه لأمر مفاجئ أن يكون من الصعب شرح ماذا يحدث عندما تقوم بتقليب الكريمة في كوب قهوتك الصباحية.
معادلات نافييه- ستوكس هي النسخة الخاصة بحركة السوائل المنبثقة من قوانين نيوتن الثلاثة الخاصة بالحركة. فتصف تلك المعادلات كيفية تدفق السوائل والغازات التي تتكون في ظل ظروف متنوعة. وتماماً مثل قانون نيوتن الثاني، والذي يصف كيف أن سرعة الشيء ستتغير تحت تأثير قوة خارجية، فإن معادلات نافييه ستوكس تصف الكيفية التي تتغير بها سرعة تدفق أي سائل تحت تأثير العوامل الداخلية مثل الضغط واللزوجة، بجانب العوامل الخارجية مثل الجاذبية.
معادلات نافييه- ستوكس هي عبارة عن نظام من المعادلات التفاضلية (Differential Equations). المعادلات التفاضلية تصف كيفية تغير كمية معينة على مدى الوقت، مع الأخذ في الاعتبار بعض ظروف الأولية. وتُعتبر تلك المعادلات ذات فائدة كبيرة في وصف كل أنواع الأنظمة الفيزيائية. في حالة معادلات نافييه- ستوكس فنحن نبدأ بالتدفق الأولي للسائل، وتقوم المعادلات التفاضلية بوصف كيفية تطور ذلك التدفق.
حل المعادلة التفاضلية يعني إيجاد قاعدة رياضية لتحديد القيمة التي ستكون عليها الكمية -محل اهتمامك- في أي وقت محدد، وذلك بناءً على المعادلات التي تصف كيفية تغير الكمية. تُوصف العديد من الأنظمة الفيزيائية باستخدام المعادلات التفاضلية، مثل ذبذبة عود الجيتار، أو تدفق الحرارة من جسم ساخن إلى جسم بارد، وتلك المعادلات لها حلول معروفة من تلك النوعية.
مع ذلك، فإن معادلات نافييه- ستوكس أكثر صعوبة وتعقيداً. رياضياً، الأدوات المُستخدمة لحل المعادلات التفاضلية الأخرى لم تثبت فاعليتها هنا. وفيزيائياً، قد تظهر السوائل سلوكاً فوضوياً ومضطرباً (هائجاً): فيميل الدخان المنبثق من شمعة أو سيجارة للتدفق بانسيابية وبشكل يمكن التنبؤ به، لكنها سرعان ما يؤول إلى دوامات لا يمكن التنبؤ بمساراتها.
من الممكن أن يعني ذلك السلوك المضطرب والفوضوي أن معادلات نافييه- ستوكس لا يمكن حلها في جميع الحالات. قد يكون من الممكن إنشاء سائل رياضي مثالي والذي- طبقاً للمعادلات- سيصبح لاحقاً مضطرباً لما لانهاية.
أي شخص سيتمكن من إيجاد طريقة لحل معادلات نافييه- ستوكس في كل الحالات، أو يأتي بمثال على الحالة التي لا يمكن خلالها حل تلك المعادلات، فسوف ينال جائزة القرن لحل تلك المسألة.
3- نظريَّة يانغ – ميلز وفجوة الكتلة الكمومية
توجد علاقة دائمة متبادلة المنفعة بين علمي الرياضيات والفيزياء. فقد أدت التطورات في الرياضيات في كثير من الأحيان إلى فهم جديد للنظرية الفيزيائية، بينما تحفز الاكتشافات الحديثة في علم الفيزياء على التعمق في استقصاء التفسيرات الرياضية الأساسية.
يمكن القول بأن ميكانيكا الكم هي أكثر النظريات الفيزيائية نجاحاً في التاريخ. تتصرف المادة والطاقة بشكل مختلف جداً على نطاق الذرات والجسيمات دون الذرية، وكان تطوير الفهم النظري والتجريبي لهذا السلوك، واحداً من الإنجازات العظيمة في القرن العشرين.
تُعد نظرية يانغ ميلز واحدة من الأسس الرئيسية لميكانيكا الكم الحديثة، والتي تصف السلوك الكمي للموجات الكهرومغناطيسية والقوى النووية الضعيفة والقوية، باستخدام هيكلية معتمدة في الهندسة الرياضية و التي تنشأ في دراسة التناظر الهندسي. وقد تم التحقق من توقعات نظرية يانغ ميلز من قبل عدد لا يحصى من التجارب، كما تمثل النظرية جزءاً هاماً من فهمنا لكيفية تجمع الذرات معاً.
وعلى الرغم من هذا النجاح الفيزيائي، إلا أن أساس النظرية الرياضي لا يزال غير واضح. وهناك مشكلة معينة تثير الاهتمام هي “فجوة الكتلة”، التي تتطلب أن تكون بعض الجسيمات دون الذرية التي تشبه في بعض النواحي الفوتونات بلا كتلة وتسير بسرعة الضوء، بدلاً من أن يكون لها كتلة إيجابية. فجوة الكتلة هي جزء مهم والتي يرجع إليها السبب في أن القوى النووية قوية للغاية مقارنة بالقوى الكهرومغناطيسية وقوى الجاذبية، ولكن لها مدى قصيرة للغاية.
جائزة مسائل الألفية، تتمثل في أن تعرض نظرية رياضية عامة وراء نظرية يانغ ميلز الفيزيائية، وأن تجد تفسيراً رياضياً جيداً لفجوة الكتلة.
4- فرضية ريمان
بالعودة إلى العصور القديمة، فإن الأعداد الأولية -هي تلك الأعداد التي لا تقبل القسمة إلا على نفسها وعلى الواحد فقط – لقد كانت موضوعاً جذاباً لعلماء الرياضيات. على المستوى الأساسي، الأعداد الأولية هي “الركائز الأساسية” لجميع الأعداد الأخرى، إذ يمكن تقسيم أي عدد كامل بشكل فريد إلى حاصل ضرب عدد أولي واحد أو مجموعة من الأعداد الأولية.
وبالنظر إلى مركزية الأعداد الأولية في الرياضيات، فإن هناك تساؤلات حول كيفية توزيع الأعداد الأولية على طول خط الأرقام الطبيعية – ويعني بذلك كم تبعد المسافات التي تفصل بين الأعداد الأولية عن بعضها البعض – وهي مجالات مثيرة للاهتمام.
بحلول القرن التاسع عشر، اكتشف علماء الرياضيات الصيغ المختلفة التي تعطي فكرة تقريبية عن متوسط المسافة بين الأعداد الأولية. ولكن مازال من غير المعروف مدى قرب هذا المتوسط من التوزيع الحقيقي للأعداد الأولية، أي ما إذا كانت هناك أجزاء من خط الأرقام حيث توجد أعداد “كثيرة جداً” أو “قليلة جداً” من الأعداد الأولية وفقاً لتلك الصيغ المتوسطة.
وتحد فرضية ريمان من هذه الاحتمالات من خلال وضع حدود على المدى البعيد الذي يمكن أن يحيد عنه متوسط توزيع الأعداد الأولية. تعادل الفرضية وعادة ما تُطرح على أساس، ما إذا كانت الحلول القائمة على معادلة التركيب الرياضي التي تسمى”دالة ريمان زيتا” كلها تقع على طول خط معين في مستوى العدد المركب أم لا. أصبح بالفعل دراسة دوال مثل دالة زيتا، تمثل منطقتها الخاصة من الاهتمام الرياضي، مما أكسب فرضية ريمان والمسائل ذات الصلة أهمية أكثر.
مثل العديد من مسائل جائزة الألفية، هناك أدلة مهمة تشير إلى أن فرضية ريمان صحيحة، ولكن الإثبات الدقيق لا يزال بعيد المنال. حتى الآن، وجدت الأساليب الحسابية حوالي 10 تريليون من حلول معادلة الدالة زيتا والتي تقع على طول الخط المطلوب، مع عدم وجود أمثلة مضادة.
وبطبيعة الحال، فإنه من المنظور الرياضي، وجود 10 تريليونات مثالاً على فرضية صحيحة، لا يمكن أن يكون بديلاً على الإطلاق عن إثباتٍ كامل على هذه الفرضية، مما يترك فرضية ريمان واحدة من مشاكل جائزة الألفية المفتوحة.
5- حدسية بيرتش و سوينرتون-ديير
واحدة من أقدم وأكثر المعادلات الرياضية دراسة هي معادلات ديوفانتين، أو المعادلات متعددة الحدود (البلونوميال) التي نرغب في إيجاد العدد الكامل من حلول تلك المعادلة. أحد الأمثلة الكلاسيكية التي قد يتذكرها كثيرٌ من خلال دراسة الهندسة في المدرسة الثانوية هي معادلة فيثاغورس الثلاثية، والتي تتكون من مجموعات من ثلاثة أعداد صحيحة والتي تحقق نظرية فيثاغورس
x2 + y2 = z2
في السنوات الأخيرة، ركز علماء الجبر على دراسة المنحنيات الإهليلجية، والتي يتم تعريفها من قبل نوع معين من معادلة ديفونتين. لهذه المنحنيات تطبيقات هامة في جوانب عديدة سواء من الناحية النظرية أو التشفير، ويمثل إيجاد العدد الكامل أو الحلول العقلانية المجال الرئيسي للدراسة.
هذا ويُعد برهان أندرو وايلز على نظرية فيرمات الكلاسيكية الأخيرة واحدة من التطورات الرياضية المذهلة في العقود القليلة الماضية، والتي أثبت من خلالها أن النسخة الأسية الأعلى من نظرية فيثاغورس لا وجود لها. وكان دليل ويلز على تلك النظرية نتيجة لتطور أوسع لنظرية المنحنيات الإهليلجية.
توفر حدسية بيرتش و سوينرتون-ديير مجموعة إضافية من الأدوات التحليلية في فهم الحلول للمعادلات التي تحددها المنحنيات الإهليلجية.
6- تخمين أو حدسية هودج
يظهر الانضباط الرياضي للهندسة الجبرية على نطاق واسع، من خلال دراسة الأشكال ذات الأبعاد العالية التي يمكن تعريفها جبرياً كمجموعة حلول للمعادلات الجبرية.
وكمثال بسيط للغاية، ربما تتذكر من دراسة الجبر في المدرسة الثانوية أن المعادلة y = x2 تنتج في منحنى مكافئ عندما يتم رسم الحلول لهذه المعادلة على قطعة من ورقة الرسم البياني. تتعامل الهندسة الجبرية مع نظائرها ذات الأبعاد العالية من هذا النوع من المنحنيات، وعندما ينظر المرء إلى نظم المعادلات المتعددة والمعادلات ذات المتغيرات المتعددة والمعادلات المستويات المعقدة العدد بدلاً عن الأرقام الحقيقية.
لقد شهد القرن العشرين ازدهاراً في مجال التقنيات المتطورة لفهم المنحنيات والسطوح والأسطح الفائقة التي تمثل موضوع دراسة الهندسة الجبرية. يمكن جعل الأشكال التي يصعب تخيلها أكثر قابلية للتوصيل من خلال أدوات حسابية معقدة.
ويقترح تخمين هودج أن أنواعاً معينة من الهياكل الهندسية لديها نظير جبري مفيد بشكل خاص الذي يمكن استخدامه لدراسة وتصنيف هذه الأشكال بصورةٍ أفضل.


انقر هنا لقراءة الخبر من مصدره.